1. 9 적률 생성 함수와 누적 생성 함수 (Some special Expextations)
Def 1.9.1 | (population) mean of r.v. X : (모집단이 가지는) 평균
μ := E(X) , = ∫ xf(x) dx
Def 1.9.2 | variance of r.v. X : 분산
σ² := E[{X-E(X)}²] , = E(X²) - {E(X)}²
Remark | E(Xᵏ) : k-th moment, k차 적률
μ : 1st moment
σ² : 2nd moment - (1st moment)²
E[(X-μ)ᵏ) : k-th central moment
Def 1.9.3 | Moment Generating Function (적률 생성 함수, mgf)
X : r.v.
Mₓ(t) := E[eᵗˣ], |t|<h, h>0
= ∫(-∞~∞) eᵗˣf(x) dx
Thm 1.9.1 | Uniqueness of mgf : mgf가 존재한다면, 유일하다.
Mₓ(t) : mgf of r.v. X & My(t) : mgf of r.v. Y
⇒ Fₓ(t) = Fy(t) ⇔ Mₓ(t) = My(t)
Remark 1.9.1 | mgf may not exist. : mgf는 존재하지 않을 수도 있다.
X : r.v. with pdf f(x)=1/x²*I (x>1)
Mₓ(t) = ∫(1~∞) eᵗˣ1/x² dx = lim(b→∞)∫(1~b) (1+tx+1/2t²x²+· · ·)*1/x² dx : not integrable
Remark 1.9.2 | Sometimes can find the pdf from the mgf.
Mₓ(t) = 1/10eᵗ + 2/10e²ᵗ + 3/10e³ᵗ + 4/10e⁴ᵗ
⇒ Mₓ(t) = ∑eᵗˣPₓ(x), x=1,2,3,4
⇒ Pₓ(1) = 1/10, Px(2) = 2/10, Px(3) = 3/10, Px(4) = 4/10
⇒ Pₓ(x) = x/10, x=1,2,3,4
Remark 1.9.3 | Can compute E(Xᵐ), m = 1, 2, · · ·, using the mgf.
Mₓ(t) = E[eᵗˣ] = E[1+tx+1/2t²x²+· · ·]
= 1 + tE(X) + t²/2*E(X²) + · · ·
= 1 + μ*t + μ₂²/2*t² + · · ·, where μₖ = E(xᵏ)
Mₓ(t)’|t=0 = μ + μ₂t + · · ·|t=0 = μ
Mₓ(t)’’|t=0 = μ₂ + μ₃t + · · ·|t=0 = μ₂
·
·
In general, Mₓ⁽ᵏ⁾(0) = μₖ , k=1, 2, · · ·
i.e. Mₓ(t) = ∑μⱼ/j!*tʲ : power series expansion
Remark 1.9.4 | Characteristic Function (특성 함수, Ch. f)
φ(t) := E[eⁱᵗˣ], where i : imaginary
= E[cos(tx) + isin(tx)]
· Ch.f always exists
|φ(t)| = |∫eⁱᵗˣf(x)dx| ≤ ∫|eⁱᵗˣ|f(x)dx = ∫f(x)dx = 1.
· μ = -iφ’(0)
· E(X²) = -φ’’(0)
Remark 1.9.5 | Cumulant generating function (누적 생성 함수, cgf)
ψ(t) := logMₓ(t) : cgf of r.v. X
Recall that Mₓ(t) = ∑μⱼ/j!*tʲ : power series , μⱼ : j-th moment
Let ψ(t) = ∑kⱼ/j!*tʲ : power series , kⱼ : j-th cumulant
[Relationship between moments and cumulants]
k₀ = 0, k₁ = μ, k₂ = σ², k₃ = E[(X-μ)³] := μ₃’, · · ·
μⱼ’ = E[(X-μ)ʲ] : j-th central moment
Remark 1.9.6 | Skewness and Kurtosis
· ρ₃ := E[(X-μ)³]/σ³ : skewness(왜도, 치우친 정도)
· ρ₄ := E[(X-μ)⁴]/σ⁴ : kurtosis(첨도, 뾰족한 정도)
'Mathematics > 수리통계학 I' 카테고리의 다른 글
1. 8 확률 변수의 기댓값 (Expectation of a Random Variable) (0) | 2024.02.29 |
---|---|
1. 7 연속 확률 변수 (Continuous Random Variables) (4) | 2024.02.29 |
1. 6 이산 확률 변수 (Discrete Random Variables) (0) | 2024.02.29 |
1. 5 확률 변수(Random Variables) (1) | 2024.02.29 |
1. 4 조건부확률과 독립사건 (Conditional Probability and Independence) (0) | 2024.02.28 |